Sains Malaysiana 53(5)(2024): 1149-1166
http://doi.org/10.17576/jsm-2024-5305-14
Optimizing Methylene Blue Dye Adsorption
onto Liquid Natural Rubber-Based Hydrogel: Kinetics, Isotherms and Reusability
(Mengoptimumkan Penjerapan Pewarna Biru Metilena pada Hidrogel Berasaskan Getah Asli Cecair: Kinetik, Isoterma dan Kebolehgunaan Semula)
OMAR
D. ABDUL SATTAR1,2,
ROZIDA MOHD KHALID2,3, SITI FAIRUS M. YUSOFF2,3,*
1Department of Chemistry,
College of Sciences, University of Diyala, Iraq
2Department of Chemical Sciences,
Faculty of Science andTechnology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
3Polymer Research Centre (PORCE),
Faculty of Science andTechnology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
Diserahkan: 21 Januari 2024/Diterima: 26 Mac 2024
Abstract
In
recent years, notable advancements have taken place in the textile industry,
particularly with the widespread use of synthetic dyes such as methylene blue
(MB). However, the environmental impact of these dyes has raised significant
concerns. Their potential to influence both chemical and biochemical demand
poses risks, leading to potential disruptions in aquatic plant photosynthesis.
Additionally, concerns exist regarding the toxicity and potential
carcinogenicity of these dyes to humans. This study achieved successful
hydrogel synthesis through the efficient utilization of ultrasonic methods,
combining liquid natural rubber (LNR), acrylic acid (AAc),
and pectin (Pc) to adsorb MB from aqueous solutions. Fourier Transform Infrared
Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM) were employed to analyze the structure. Utilizing Response Surface
Methodology (RSM), the study investigated the effects of the AAc:LNR weight ratio and Pc weight
on hydrogel preparation for MB removal. This led to the development of a
quadratic polynomial model with an ANOVA-derived R2 value of 0.9970.
Optimal conditions for hydrogel production were identified as a 3.00 g/g AAc:LNR weight ratio and 0.0325g
of Pc, resulting in an impressive 99.07% MB removal effectiveness. The limit of detection (LOD)
for methylene blue adsorption was calculated at 0.64 ppm. The kinetics and
isotherms of MB removal were described by the pseudo-second-order and Freundlich models, respectively. Furthermore, the
investigation into hydrogel reusability demonstrated its capability for up to
five utilization cycles. The LNR/AAc/Pc hydrogel
exhibits promising potential as an effective, cost-efficient, and
environmentally conscious adsorbent for MB removal. This makes it applicable to
water treatment scenarios involving cationic dyes.
Keywords:
Acrylic acid; adsorption; natural rubber; pectin; Response Surface Methodology
Abstrak
Beberapa tahun kebelakangan ini, terdapat kemajuan yang signifikan dalam industri tekstil, khususnya dengan penggunaan pewarna sintetik seperti metilina biru (MB). Walau bagaimanapun, kesan alam sekitar daripada pewarna ini telah menimbulkan kebimbangan yang ketara. Pewarna ini berpotensi untuk mempengaruhi permintaan kimia dan biokimia yang boleh menyebabkan gangguan dalam fotosintesis tumbuhan akuatik. Selain itu, terdapat risiko berkaitan dengan ketoksikan dan potensi karsinogen kepada manusia. Kajian ini telah berjaya mensintesis hidrogel melalui penggunaan kaedah ultrasonik yang cekap dengan menggabungkan getah asli cecair (LNR), asid akrilik (AAc) dan pektin (Pc) untuk menjerap MB daripada larutan akues. Spektroskopi Inframerah Transformasi Fourier (FTIR) dan Mikroskopi Elektron Imbasan (SEM) digunakan untuk menganalisis struktur hidrogel. Dengan menggunakan Kaedah Gerak Balas Permukaan (RSM), penyelidikan ini mengkaji kesan nisbah berat AAc:LNR dan berat Pc terhadap penghasilan hidrogel dalam penyingkiran MB. Ini menghasilkan model polinomial kuadratik dengan nilai R2 yang diperoleh daripada ANOVA sebanyak 0.9970. Keadaan optimum untuk penyingkiran hidrogel dikenal pasti sebagai nisbah berat AAc:LNR sebanyak 3.00 g/g dan 0.0325 g Pc yang menghasilkan keberkesanan penyingkiran MB sebanyak 99.07%. Had umum penemuan (LOD) bagi penjerapan biru metilina telah dihitung pada 0.64 ppm. Kinetik dan isoterma penyingkiran MB masing-masing dijelaskan oleh model
pseudo-tertib kedua dan Freundlich. Selain itu, kajian mengenai kebolehgunaan semula hidrogel menunjukkan keupayaannya untuk sehingga lima kitaran kegunaan. Hidrogel LNR/AAc/Pc menunjukkan potensi yang baik sebagai penjerap yang berkesan, kos-cekap dan peka alam sekitar untuk penyingkiran MB. Ini menjadikannya sesuai untuk senario rawatan air yang melibatkan pewarna kation.
Kata kunci: Asid akrilik; getah asli; Kaedah Gerak Balas Permukaan; pektin; penjerapan
RUJUKAN
Abdel-Halim, E.S. & Al-Deyab, S.S. 2014. Preparation of poly(acrylic
acid)/starch hydrogel and its application for cadmium ion removal from aqueous
solutions. Reactive and Functional Polymers 75: 1-8.
doi:10.1016/j.reactfunctpolym.2013.12.003
Ahmad, N.H., Mohamed, M.A. & Yusoff, S.F.M. 2020.
Improved adsorption performance of rubber-based hydrogel: Optimisation through
response surface methodology, isotherm, and kinetic studies. Journal of
Sol-Gel Science and Technology 94(2): 322-334. doi:10.1007/s10971-020-05254-7
Aiza Jaafar, C.N., Zainol, I., Ishak, N.S., Ilyas, R.A.
& Sapuan, S.M. 2021. Effects of the liquid natural rubber (LNR) on
mechanical properties and microstructure of epoxy/silica/kenaf hybrid composite
for potential automotive applications. Journal of Materials Research and
Technology 12: 1026-1038. doi:10.1016/j.jmrt.2021.03.020
Allouss, D., Essamlali, Y., Amadine, O., Chakir, A. &
Zahouily, M. 2019. Response surface methodology for optimization of methylene
blue adsorption onto carboxymethyl cellulose-based hydrogel beads: Adsorption
kinetics, isotherm, thermodynamics and reusability studies. RSC Advances 9(65): 37858-37869. doi:10.1039/c9ra06450h
Amnuaypanich, S. & Kongchana, N. 2009. Natural
rubber/poly(acrylic acid) semi-interpenetrating polymer network membranes for
the pervaporation of water-ethanol mixtures. Journal of Applied Polymer
Science 114(6): 3501-3509. doi:10.1002/app.30836
Asgari, G., Roshani, B. & Ghanizadeh, G. 2012. The
investigation of kinetic and isotherm of fluoride adsorption onto functionalize
pumice stone. Journal of Hazardous Materials 217-218: 123-132.
doi:10.1016/j.jhazmat.2012.03.003
Bao, Z., Xian, C., Yuan, Q., Liu, G. & Wu, J. 2019.
Natural polymer-based hydrogels with enhanced mechanical performances:
Preparation, structure, and property. Advanced Healthcare Materials 8(17): e1900670. doi:10.1002/adhm.201900670
Bhattacharyya, R. & Ray, S.K. 2015. Removal of congo
red and methyl violet from water using nano clay filled composite hydrogels of
poly acrylic acid and polyethylene glycol. Chemical Engineering Journal 260: 269-283. doi:10.1016/j.cej.2014.08.030
Cui, Y., Xiang, Y., Xu, Y., Wei, J., Zhang, Z., Li, L.
& Li, J. 2020. Poly-acrylic acid grafted natural rubber for multi-coated
slow release compound fertilizer: Preparation, properties and slow-release
characteristics. International Journal of Biological Macromolecules 146:
540-548. doi:10.1016/j.ijbiomac.2020.01.051
Dada,
A.O., Olakekan, A.P., Olatunya, A.M. & Dada, O. 2012. Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms
studies of equilibrium sorption of Zn2+ unto phosphoric acid
modified rice husk. IOSR Journal of Applied Chemistry 3(1): 38-45.
doi:10.9790/5736-0313845
Erfani, M. & Javanbakht, V. 2018. Methylene blue
removal from aqueous solution by a biocomposite synthesized from sodium
alginate and wastes of oil extraction from almond peanut. International
Journal of Biological Macromolecules 114: 244-255.
doi:10.1016/j.ijbiomac.2018.03.003
Firdaus, F., Idris, M.S.F. & Yusoff, S.F.M. 2019.
Adsorption of nickel ion in aqueous using rubber-based hydrogel. Journal of
Polymers and the Environment 27(8): 1770-1780.
doi:10.1007/s10924-019-01469-0
Foo, K.Y. & Hameed, B.H. 2010. Insights into the
modeling of adsorption isotherm systems. Chemical Engineering Journal 156(1): 2-10. doi:10.1016/j.cej.2009.09.013
Gnanasambandam, R. & Proctor, A. 2000. Determination
of pectin degree of esterification by diffuse reflectance. Food Chemistry 68(3): 327-332.
Gomes, R.F., de Azevedo, A.C.N., Pereira, A.G.B., Muniz,
E.C., Fajardo, A.R. & Rodrigues, F.H.A. 2015. Fast dye removal from water
by starch-based nanocomposites. Journal of Colloid and Interface Science 454: 200-209. doi:10.1016/j.jcis.2015.05.026
Hakam, A., Rahman, I.A., Jamil, M.S.M., Othaman, R.,
Amin, M.C.I.M. & Lazim, A.M. 2015. Removal of methylene blue dye in aqueous
solution by sorption on a bacterial-g-poly-(acrylic acid) polymer network
hydrogel. Sains Malaysiana 44(6): 827-834. doi:10.17576/jsm-2015-4406-08
Hamidon, N.H., Abang Zaidel, D.N. & Mohd Jusoh, Y.M.
2020. Optimization of pectin extraction from sweet potato peels using citric
acid and its emulsifying properties. Recent Patents on Food, Nutrition &
Agriculture 11(3): 202-210. doi:10.2174/2212798411666200207102051
Ho, Y.S. & McKay, G. 1999. Pseudo-second order model
for sorption processes. Process Biochemistry 34(5): 451-465.
doi:10.1016/S0032-9592(98)00112-5
Jamaluddin, N., Yusof, M.J.M., Abdullah, I. & Yusoff,
S.F.M. 2016. Synthesis, characterization, and properties of hydrogenated liquid
natural rubber. Rubber Chemistry and Technology 89(2): 227-239.
doi:10.5254/rct.15.84869
Jiao, T., Guo, H., Zhang, Q., Peng, Q., Tang, Y., Yan, X.
& Li, B. 2015. Reduced graphene oxide-based silver nanoparticle-containing
composite hydrogel as highly efficient dye catalysts for wastewater treatment. Scientific
Reports 5: 11873. doi:10.1038/srep11873
Junlapong, K., Maijan, P., Chaibundit, C. &
Chantarak, S. 2020. Effective adsorption of methylene blue by biodegradable
superabsorbent cassava starch-based hydrogel. International Journal of
Biological Macromolecules 158: 258-264. doi:10.1016/j.ijbiomac.2020.04.247
Kratchanova, M., Pavlova, E. & Panchev, I. 2004. The
effect of microwave heating of fresh orange peels on the fruit tissue and
quality of extracted pectin. Carbohydrate Polymers 56(2): 181-185.
doi:10.1016/j.carbpol.2004.01.009
Krishnamoorthy, M., Ahmad, N.H., Amran, H.N., Mohamed,
M.A., Kaus, N.H.M. & Yusoff, S.F.M. 2021. BiFeO3 immobilized
within liquid natural rubber-based hydrogel with enhanced
adsorption-photocatalytic performance. International Journal of Biological
Macromolecules 182: 1495-1506. doi:10.1016/j.ijbiomac.2021.05.104
Lagergren, S.K. 1898. About the theory of so-called
adsorption of soluble substances. Sven. Vetenskapsakad 24: 1-39.
Langmuir, I. 1917. The constitution and fundamental
properties of solids and liquids. II Liquids. J. Am. Chem. Soc. 39:
1848-1906.
Langmuir, I. 1916. The constitution and fundamental
properties of solids and liquids. Part I. Solids. Journal of the American
Chemical Society 38(11): 2221-2295. doi:10.1021/ja02268a002
Lazim, A.M., Musbah, D.L., Chin, C.C., Abdullah, I.,
Mustapa, M.H.A. & Azfaralariff, A. 2019. Oil removal from water surface
using reusable and absorptive foams via simple fabrication of liquid natural
rubber (LNR). Polymer Testing 73: 39-50.
doi:10.1016/j.polymertesting.2018.11.016
Lee, K.Y. & Choo, W.S. 2020. Extraction optimization
and physicochemical properties of pectin from watermelon (Citrullus lanatus)
Rind: Comparison of hydrochloric and citric acid extraction. Journal of
Nutraceuticals and Food Science 5(1): 1. doi: 10.36648/nutraceuticals.5.1.1
Liu, C., Omer, A.M. & Ouyang, X. 2018. Adsorptive
removal of cationic methylene blue dye using carboxymethyl
cellulose/k-carrageenan/activated montmorillonite composite beads: Isotherm and
kinetic studies. International Journal of Biological Macromolecules 106:
823-833. doi:10.1016/j.ijbiomac.2017.08.084
Ma, D., Zhu, B., Cao, B., Wang, J. & Zhang, J. 2017.
Fabrication of the novel hydrogel based on waste corn stalk for removal of
methylene blue dye from aqueous solution. Applied Surface Science 422:
944-952. doi:10.1016/j.apsusc.2017.06.072
Mathew, P., Sasidharan, D. & Rakesh, N.P. 2020.
Copper(I) stabilized on N,N′-methylene bis-acrylamide crosslinked
polyvinylpyrrolidone: An efficient reusable catalyst for click synthesis of
1,2,3-triazoles in water. Applied Organometallic Chemistry 34(7): e5642.
doi:10.1002/aoc.5642
Mittal, H., Maity, A. & Ray, S.S. 2015. Synthesis of
co-polymer-grafted gum karaya and silica hybrid organic-inorganic hydrogel
nanocomposite for the highly effective removal of methylene blue. Chemical
Engineering Journal 279: 166-179. doi:10.1016/j.cej.2015.05.002
Mohafezatkar Gohari, R., Safarnia, M., Dadvand Koohi, A.
& Baghban Salehi, M. 2022. Adsorptive removal of cationic dye by
synthesized sustainable xanthan gum-g p(AMPS-co-AAm) hydrogel from aqueous
media: Optimization by RSM-CCD model. Chemical Engineering Research and
Design 188: 714-728. doi:10.1016/j.cherd.2022.10.028
Mohammadzadeh Pakdel, P., Peighambardoust, S.J.,
Foroutan, R., Arsalani, N. & Aghdasinia, H. 2022. Decontamination of
Fuchsin dye by carboxymethyl cellulose-graft-poly(acrylic acid-co-itaconic
acid)/carbon black nanocomposite hydrogel. International Journal of
Biological Macromolecules 222: 2083-2097.
doi:10.1016/j.ijbiomac.2022.10.007
Mohd, N.H., Kargazadeh, H., Miyamoto, M., Uemiya, S.,
Sharer, N., Baharum, A., Lee Peng, T., Ahmad, I., Yarmo, M.A. & Othaman, R.
2021. Aminosilanes grafted nanocrystalline cellulose from oil palm empty fruit
bunch aerogel for carbon dioxide capture. Journal of Materials Research and
Technology 13: 2287-2296. doi:10.1016/j.jmrt.2021.06.018
Mohd Noor, N.F. & Yusoff, S.F.M. 2020.
Ultrasonic-enhanced synthesis of rubber-based hydrogel for waste water
treatment: Kinetic, isotherm and reusability studies. Polymer Testing 81: 106200. doi:10.1016/j.polymertesting.2019.106200
Nakason, C., Kaesaman, A. & Supasanthitikul, P. 2004.
The grafting of maleic anhydride onto natural rubber. Polymer Testing 23(1): 35-41. doi:10.1016/S0142-9418(03)00059-X
Nesic, A.R., Velickovic, S.J. & Antonovic, D.G. 2014.
Novel composite films based on amidated pectin for cationic dye adsorption. Colloids
and Surfaces B: Biointerfaces 116: 620-626.
doi:10.1016/j.colsurfb.2013.10.031
Nouri, M. & Mokhtarian, M. 2020. Optimization of
pectin extractions from walnut green husks and characterization of the
extraction physicochemical and rheological properties. Nutrition and Food
Sciences Research 7(2): 47-58. doi:10.29252/nfsr.7.2.47
Oliveira, T.Í.S., Rosa, M.F., Cavalcante, F.L., Pereira,
P.H.F., Moates, G.K., Wellner, N., Mazzetto, S.E., Waldron, K.W. & Azeredo,
H.M.C. 2016. Optimization of pectin extraction from banana peels with citric
acid by using response surface methodology. Food Chemistry 198: 113-118.
doi:10.1016/j.foodchem.2015.08.080
Pandey, M., Choudhury, H., Segar Singh, S.K., Annan,
N.C., Bhattamisra, S.K., Gorain, B. & Amin, M.C.I.M. 2021.
Budesonide-loaded pectin/polyacrylamide hydrogel for sustained delivery:
Fabrication, characterization and in vitro release kinetics. Molecules 26(9): 2704. doi:10.3390/molecules26092704
Pei, Y., Chu, S., Chen, Y., Li, Z.,
Zhao, J., Liu, S., Wu, X., Liu, J., Zheng, X. & Tang, K. 2017.
Tannin-immobilized cellulose hydrogel fabricated by a homogeneous reaction as a
potential adsorbent for removing cationic organic dye from aqueous solution. International
Journal of Biological Macromolecules 103: 254-260.
doi:10.1016/j.ijbiomac.2017.05.072
Peng, M., Chen, G., Zeng, G., Chen, A., He, K., Huang, Z.,
Hu, L., Shi, J., Li, H., Yuan, L. & Huang, T. 2018. Superhydrophobic
kaolinite modified graphene oxide-melamine sponge with excellent properties for
oil-water separation. Applied Clay Science 163: 63-71.
doi:10.1016/j.clay.2018.07.008
Polgar, L.M., Fortunato, G., Araya-Hermosilla, R., van
Duin, M., Pucci, A. & Picchioni, F. 2016. Cross-linking of rubber in the
presence of multi-functional cross-linking aids via thermoreversible
Diels-Alder chemistry. European Polymer Journal 82: 208-219.
doi:10.1016/j.eurpolymj.2016.07.018
Pongsathit, S. & Pattamaprom, C. 2018. Irradiation
grafting of natural rubber latex with maleic anhydride and its
compatibilization of poly(lactic acid)/natural rubber blends. Radiation
Physics and Chemistry 144: 13-20. doi:10.1016/j.radphyschem.2017.11.006
Primo, G.A., Alvarez Igarzabal, C.I., Pino, G.A.,
Ferrero, J.C. & Rossa, M. 2016. Surface morphological modification of
crosslinked hydrophilic co-polymers by nanosecond pulsed laser irradiation. Applied
Surface Science 369: 422-429. doi:10.1016/j.apsusc.2016.02.047
Santos, J.D.G., Espeleta, A.F., Branco, A. & De
Assis, S.A. 2013. Aqueous extraction of pectin from sisal waste. Carbohydrate
Polymers 92(2): 1997-2001. doi:10.1016/j.carbpol.2012.11.089
Senthil Kumar, P. 2014. Adsorption of lead(II) ions from
simulated wastewater using natural waste: A kinetic, thermodynamic and
equilibrium study. Environmental Progress & Sustainable Energy 33(1): 55-64. doi:10.1002/ep.11750
Sharma, A.K., Priya, Kaith, B.S., Panchal, S., Bhatia,
J.K., Bajaj, S., Tanwar, V. & Sharma, N. 2019. Response surface methodology
directed synthesis of luminescent nanocomposite hydrogel for trapping anionic
dyes. Journal of Environmental Management 231: 380-390.
doi:10.1016/j.jenvman.2018.10.038
Singh, N., Agarwal, S., Jain, A. & Khan, S. 2021.
3-Dimensional cross linked hydrophilic polymeric network 'hydrogels': An
agriculture boom. Agricultural Water Management 253: 106939.
doi:10.1016/j.agwat.2021.106939
Taheri, S., Hassani, Y., Sadeghi, G.M.M., Moztarzadeh, F.
& Li, M.C. 2016. Graft copolymerization of acrylic acid on to styrene
butadiene rubber (SBR) to improve morphology and mechanical properties of
SBR/polyurethane blend. Journal of Applied Polymer Science 133(29):
43699. doi:10.1002/app.43699
Thakur, S., Chaudhary, J., Kumar, V. & Thakur, V.K.
2019. Progress in pectin based hydrogels for water purification: Trends and
challenges. Journal of Environmental Management 238: 210-223.
doi:10.1016/j.jenvman.2019.03.002
Tongkham, N., Juntasalay, B., Lasunon, P. &
Sengkhamparn, N. 2017. Dragon fruit peel pectin: Microwave-assisted extraction
and fuzzy assessment. Agriculture and Natural Resources 51(4): 262-267.
doi:10.1016/j.anres.2017.04.004
Vudjung, C. & Saengsuwan, S. 2018. Biodegradable IPN
hydrogels based on pre-vulcanized natural rubber and cassava starch as coating
membrane for environment-friendly slow-release urea fertilizer. Journal of
Polymers and the Environment 26(9): 3967-3980.
doi:10.1007/s10924-018-1274-8
Wei, Z., Zhao, J., Chen, Y.M., Zhang, P. & Zhang, Q.
2016. Self-healing polysaccharide-based hydrogels as injectable carriers for
neural stem cells. Scientific Reports 6: 37841. doi:10.1038/srep37841
Wongthep, W., Srituileong, S., Martwiset, S. &
Amnuaypanich, S. 2013. Grafting of poly(vinyl alcohol) on natural rubber latex
particles. Journal of Applied Polymer Science 127(1): 104-110.
doi:10.1002/app.37829
Xu, H., Zhang, H., Ouyang, Y., Liu, L. & Wang, Y.
2016. Two-dimensional hierarchical porous carbon composites derived from corn
stalks for electrode materials with high performance. Electrochimica Acta 214: 119-128. doi:10.1016/j.electacta.2016.08.043
Yan, B., Chen, Z., Cai, L., Chen, Z., Fu, J. & Xu, Q.
2015. Fabrication of polyaniline hydrogel: Synthesis, characterization and
adsorption of methylene blue. Applied Surface Science 356: 39-47.
doi:10.1016/j.apsusc.2015.08.024
Yang, X., Zhang, J., Wang, Y., Wen, H. & Xie, J.
2021. Role of chitosan-based hydrogels in pollutants adsorption and freshwater
harvesting: A critical review. International Journal of Biological
Macromolecules 189(235): 53-64. doi:10.1016/j.ijbiomac.2021.08.047
Yusoff, S.F.M., Firdaus, F., Ahmad Zahidi, N.A. &
Abdul Halim, N.H. 2022. Optimization, kinetics isotherm, and reusability
studies of methylene blue dye adsorption using acrylic acid grafted rubber
hydrogel. Sains Malaysiana 51(10): 3307-3320.
doi:10.17576/jsm-2022-5110-16
Zhang, L., Lu, H., Yu, J., McSporran, E., Khan, A., Fan,
Y., Yang, Y., Wang, Z. & Ni, Y. 2019. Preparation of high-strength
sustainable lignocellulose gels and their applications for antiultraviolet
weathering and dye removal. ACS Sustainable Chemistry & Engineering 7(3): 2998-3009. doi:10.1021/acssuschemeng.8b04413
Zhou, C., Wu, Q., Lei, T. & Negulescu, I.I. 2014.
Adsorption kinetic and equilibrium studies for methylene blue dye by partially
hydrolyzed polyacrylamide/cellulose nanocrystal nanocomposite hydrogels. Chemical
Engineering Journal 251: 17-24. doi:10.1016/j.cej.2014.04.034
*Pengarang
untuk surat-menyurat; email: sitifairus@ukm.edu.my
|